Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies

نویسندگان

  • Xiaomian Wu
  • Xiaochen Liu
  • Jie Wei
  • Jian Ma
  • Feng Deng
  • Shicheng Wei
چکیده

BACKGROUND Compared with titanium (Ti) and other metal implant materials, poly(ether-ether ketone) (PEEK) shows outstanding biomechanical properties. A number of studies have also reported attractive bioactivity for nano-TiO(2) (n-TiO(2)). METHODS In this study, n-TiO(2)/PEEK nanocomposites were prepared, taking advantage of the unique properties of both PEEK polymer and n-TiO(2). The in vitro and in vivo bioactivity of these nanocomposites was assessed against a PEEK polymer control. The effect of surface morphology or roughness on the bioactivity of the n-TiO(2)/PEEK nanocomposites was also studied. n-TiO(2)/PEEK was successfully fabricated and cut into disks for physical and chemical characterization and in vitro studies, and prepared as cylindrical implants for in vivo studies. Their presence on the surface and dispersion in the composites was observed and analyzed by scanning and transmission electron microscopy and X-ray photoelectron spectroscopy. RESULTS Bioactivity evaluation of the nanocomposites revealed that pseudopods of osteoblasts preferred to anchor at areas where n-TiO(2) was present on the surface. In a cell attachment test, smooth PEEK showed the lowest optical density value (0.56 ± 0.07) while rough n-TiO(2)/PEEK exhibited the highest optical density value (1.21 ± 0.34, P < 0.05). In in vivo studies, the percent bone volume value of n-TiO(2)/PEEK was approximately twice as large as that of PEEK (P < 0.05). Vivid three-dimensional and histologic images of the newly generated bone on the implants further supported our test results. CONCLUSION Our study demonstrates that n-TiO(2) significantly improves the bioactivity of PEEK, especially if it has a rough composite surface. A n-TiO(2)/PEEK composite with a rough surface could be a novel alternative implant material for orthopedic and dental applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new biocompatible biomaterial : PEEK / β-TCP / TiO2 composite

Introduction : Polyetheretherketone (PEEK) is an aromatic, rigid semi-crystalline thermoplastic with excellent mechanical properties and bone-like stiffness, and good biocompatibility [1-2]. Moreover for biomedical applications, particularly in the area of load-bearing orthopaedic applications [3] PEEK is able to be repeatedly sterilized, and shaped by machining or injection moulding. Devices u...

متن کامل

In vivo experimental study of anterior cervical fusion using bioactive polyetheretherketone in a canine model

BACKGROUND Polyetheretherketone (PEEK) is a widely accepted biomaterial, especially in the field of spinal surgery. However, PEEK is not able to directly integrate with bone tissue, due to its bioinertness. To overcome this drawback, various studies have described surface coating approaches aimed at increasing the bioactivity of PEEK surfaces. Among those, it has been shown that the recently de...

متن کامل

Preparation, characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/polyetheretherketone biocomposite as orthopedic implant material

A bioactive composite was prepared by incorporating 40 wt% nano-hydroxyapatite (nHA) into polyetheretherketone (PEEK) through a process of compounding, injection, and molding. The mechanical and surface properties of the nHA/PEEK composite were characterized, and the in vitro osteoblast functions in the composite were investigated. The mechanical properties (elastic modulus and compressive stre...

متن کامل

In Vivo Osseointegration Performance of Titanium Dioxide Coating Modified Polyetheretherketone Using Arc Ion Plating for Spinal Implant Application

Polyetheretherketone (PEEK), which has biomechanical performance similar to that of human cancellous bone, is used widely as a spinal implant material. However, its bioinertness and hydrophobic surface properties result in poor osseointegration. This study applies a novel modification method, arc ion plating (AIP), that produces a highly osteoblast compatible titanium dioxide (TiO2) coatings on...

متن کامل

Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification—A Review

Purpose. The aim of this review is to summarize and evaluate the relevant literature regarding the different ways how polyetheretherketone (PEEK) can be modified to overcome its limited bioactivity, and thereby making it suitable as a dental implant material. Study Selection. An electronic literature search was conducted via the PubMed and Google Scholar databases using the keywords "PEEK denta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012